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contribution of G to the intensities may be very large. 
This follows because in the expression (2), the factors 
which multiply [G[ 2, ( R e F ,  G) and ( I m F ,  G) all 
vanish for u .  R integral, i.e. at the reciprocal-lattice 
points for the unfaulted structure. The peak intensities 
can be modified by the factors dependent on G only 
to the extent that the peaks are displaced or extended 
away from the reciprocal-lattice points into the region 
for which these multipliers are non-zero. Since both 
the peak widths and their displacements are roughly 
proportional to ~ it is seen that the contribution of G 
to the peak intensities may also be roughly propor- 
tional to a but will be negligibly small except for very 
large a values. 

Hence the 'intuitively obvious' conclusion that the 
structure amplitudes for the unit cell will be modified 
from F to F +  ~G is shown to be false. In the particular 
case of magnesium fluorogermanate, the existence of 
faults of the type discussed should not make any 
appreciable difference to the value of the occupancy 
factor r for the Ge sites deduced from the structure 
analysis. 

It is seen from equation (2) and Fig. 5 that informa- 
tion regarding the nature of the modification of the 

structure at the fault planes can, in principle, be ob- 
tained from the diffraction pattern but this would 
involve the careful measurement and interpretation of 
the intensities of the weak streaks between the main 
intensity maxima. 

The author is grateful to Dr Peter Kunzmann for 
supplying Fig. 1 and for discussion of possible forms 
of the faults; to Dr E. Kostiner for supplying samples 
used for subsequent diffraction and microscopy and 
discussion of the results, and to Dr Sumio Iijima who 
took Fig. 3 and many other fine pictures. Work sup- 
ported by NSF Grant GH-36668. 

References 

BLESS, P. W., VON DREELE, R. B., KOSTINER, E. & HUGHES, 
R. E. (1972). J. Solid. State Chem. 4, 262-268. 

COWLEY, J. M. (1969). Acta Cryst. A25, 129-134. 
COWLEY, J. M. (1976). Acta Cryst. A32, 83-87. 
COWLEY, J. M. & IIJIMA, S. (1975). Application of Electron 

Microscopy in Mineralogy. Edited by H. R. WENK. New 
York: Springer Verlag. In the press. 

IIJIMA, S. (1971). J. Appl. Phys. 42, 5891-5893. 

Acta Cryst. (1976). A32, 91 
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A conditional joint probability distribution is derived in order to estimate the values of the cosine 
invariant cos (gh + ~Pk + ~Pl -- ~h + k+ ~) in terms of the magnitudes of Eh, Ek, El, Eh + k, Eh + l, Ek+ l, Eh + k + 1. 
The theory leads to values for the cosines which lie anywhere between - 1 and + 1. Some applications 
of the quartets in procedures for crystal structure determination are described. 

I. Derivation of the theory 

1.1 Introduction 
The significance in direct methods of phase deter- 
mination of the cosine invariant cos (~h + ~Pk + ~ - -  
~0h+k+a) has been stressed in several recent papers. 

Starting from semi-empirical observations of Schenk 
(1973a), Hauptman (1974a) has developed in P1 a 
probabilistic theory of this cosine invariant which is 
valid under the assumption that [ E  h + k[, [Eh + 1], [Ek + I I a r e  
sufficiently small. In particular he derived the negative 
cosine invariant expression 

COS ((~h AV ~k _]_ (~l __ ~h  + k+ 1) ~ I I ( B )  
I0¢B)' 

where B=2lEhEkEiEh+k+l[/N. For large values of 
B this formula gives, in contrast to the estimate for 

COS ((/7hl Av ~h 2 - -  ~h  1 + h2), 

~h  "31- (/Ok "31" ~1 - -  ~ h +  I~q- 1 ~'  7~ . 

A more general probabilistic theory of the invariant 
COS(~Th-[-( /Tk"]-~Pl--~h+k+l) ,  subject to no restrictive 
conditions, has been given by Hauptman (1974b). The 
theory leads to estimates for the value of the cosine 
which may lie anywhere between - 1 and + 1. In that 
paper the joint conditional probability distribution of 
the pair (~k,~hl+k given IE-h3+k[,lgkl,lEhl+kl and for 
fixed hi and h3 was inspected. The vector k is the sole 
random variable, which is supposed uniformly 
distributed over reciprocal space. Hauptman's results 
seem satisfactory, but the final formulae are rather 
difficult to deal with. 

Independently, Giacovazzo (1975a) derived in PT 
probabilistic formulae for c o s  ((/7 h-']- (~k -[- ~91-- ~ h + k + l ) "  
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In that paper the joint probability distribution 

e ( E h ,  Ek,  E1,Eh+k,  Eh+l,  Ek  +, ,Eh+k +l) 

in which h, k, 1 in principle are all uniformly distributed 
over reciprocal space was inspected. The cosine ex- 
pression obtained, subject to no restrictive conditions, 
can assume + 1 as well as - 1 values. It is worth noting 
that this mathematical approach may be considered 
as a generalization of that used in PT for quartets of 
special type (It = k) (Giacovazzo, 1974a). 

The aim of this paper is to extend to P1 the study of 
the same probability distribution function used in PT. 
The mathematical approach generalizes that used by 
Giacovazzo (1974b) for treating special quartets in P1. 
The present approach, formulated in a general way 
in a recent monograph (Giacovazzo, 1976a), may 
easily be extended to all space groups. This aspect of 
the question will be the subject of the following paper. 

1.2 Some preliminary formulae 
We collect here for convenient reference a number of 

formulae from the theory of Bessel functions. First 
(Watson, 1958) 

--  exp (z cos ¢p) cos m~od~o=Im(z), (1) 
7~ 0 

i x ( - ~ 0 )  sin = 0.  (2) exp Z COS mfpd~0 
0 

Again imI  
exp ( -  iz cos to) cos m~od~o=Jm(z), (3) 

7~ 0 

IS exp ( - i z  cos ~o) sin m~o=O . (4) 

Jz(z) is the Bessel function of the first kind of order 
m, Iz(z) is the corresponding Bessel function of 
imaginary argument. 

Use is also made of the Weber-Sonine integral 

IoJ~(at) exp (-pZt2)tU-ldt 

2p . r (v+l )  : 1  v ~ , v + l ; _  , (5) 

where F represents the gamma function and ~F1 
(x; y; z) is the generalized hypergeometric function. 

1.3 The joint probability distribution P(Rh, Rk, R1, 
-Rh + k + 1, R h  -]- k ,  R h  + 1, R k  + l, 6Ph, ~ k ,  ~1 , "  • ", 6Pk + 1) 

Assume that the crystal structure contains N identi- 
cal atoms per unit cell and that the space group is P 1. 
In developing the theory we shall consider the frac- 
tional part of H .  r s uniformly distributed in the in- 
terval (0, 1) if H is fixed and the atomic coordinates r s 
are uniformly and independently distributed in the 
interval (0,1). Under these conditions the probability 

distribution obtained with H constant and the r s as 
random variables is a very good approximation to the 
distribution in which the r s are held constant and H is 
the random variable (Hauptman & Karle, 1953). 
This observation reveals the difference between the 
mathematical approach used in this paper and Haupt- 
man's formulation. In Hauptman's theory, in fact, 
the probability distribution 

P(IE-h3 +kl, IEk[, IEhx +kl, ~ - h 3 + k ,  (/Ok, (flh I + k)  

is studied, when the vector k is the sole random 
variable uniformly distributed over reciprocal space 
and Ehl, Eh2,Eh3 are fixed reciprocal vectors satisfying 

hi +h2+h3=0 

In this paper, on the contrary, the more general 
joint probability distribution 

e(lEh[, IEkl, IEl[, [Eh + k +,1, I Eh + kl, IEh + kl, 
IEk+ll, ~0h, ~0k, ~ , , - - - . ,  ~0k+a) 

is introduced, under the assumption that all h,k,! . . . .  , 
k + ! are random variables. As in Hauptman (1974a, b), 
excessive overlap in the Patterson function of a real 
structure, or atoms in fixed special positions, could 
cause difficulties to the exact validity of the theory. 

We introduce the abbreviations 

E, = R, exp i~ol = A ~ + iBx = Eh 
E2 = R2 exp i~02 = . . . . . .  = Ek 
. . . . . . . . . , . . , , . . . . . . . . . . .  

E 7 = R 7 exp i~p7 . . . . . . . .  = Ek + a. 

By following the generalization of the Klug (1958) 
theory proposed by Giacovazzo (1976a) we derive the 
characteristic function 

C ( u l ,  u 2 , . . . , u 7 ; / ) 1 , / ) 2 , . . . , / ) 7 )  

=exp -½ + . . . + - ~ - + ~ + . . . +  

× 1 + - - ~ - ~ +  - /~T+ 2N3] 

+ - ~ - ~ + - - ~ +  6--6--ff~]+... , (6) 

where us, vs,j= 1 , . . . , 7  are carrying variables asso- 
ciated respectively with A s and B s values, 

1 2rs 
Sv=N Y. 2v/2 r!s! :: 'w (iux)r(iuz)S...(iv7) w 

r+s+...+w=v . W] 

and 

g r $ . . . w  
~Lrs. . . w'--" ld'r/2 K/s~2 K:w/2 " 

.tx 200.. . tx 020...zx 0.. .2 

Krs... w are the cumulants of the distribution. 
The probability distribution is found by taking the 

Fourier transform of (6). We make in (6) the variable 
changes: 
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u s = [/2u~, vs= ]/2vj, 
u~ = ~  cos V~, vj =e~ sin Va, 
A~ = R~ cos (0~, B~ = R~ sin (0~, j =  1 , . . . ,  7 ,  

and obtain 

l P ( R I , . . . ,  R 7 ,  (01, • • - ,  (07)= ( 2 ~ ) 1 4  0 ' ' "  

I: If: I5 x, 
+ ]/207R 7 cos (V7-  (07)1) 

2 +  2 . 2  7 × exp {[--~(~i ~ 2 + . - .  +~72)]} 

{ s; ( s~  s ? ,  
x 1+ - ~ - ~ +  -~T+~-N3- ] 

s;s; s? ~ } 
+ ( N ~  + - ~ , ~  + 6--y~,  + • • • 

× R1R2. • • R7pl~2...  ¢7dCt. • • d~7dv l . . ,  dVT, (7) 

where 

2,.s...w (i),.+~ +.. .  +,,, 
S~ = N  ~, r!s! wl 

r + s + . . . + w = v  

X (Q1 COS ~//1)r(~2 COS ~¢2) s . . .  (Q7 s i n  ~//7) TM . 

Calculation of the standardized cumulants 2~ . . .~  
gives 

i 3 
$3/N3/2 = 2 ~  [~1~2~5 COS (~/1 "91- ~//2-- !~/5) 

-{- e l~306  c o s  (~ffl -~ ~ff3 - v6 )  

+ 02Q307 c o s  (~/2 --~ ~t3 - !//7) 

"~- eIQ7Q4 COS (~b¢1 --~ V7 - -  ~t'4) 

"{- ~2~6~4 COS (~//2 21- {/'/6 - -  ~//4) 

"~ e3e5e4  c o s  (~b¢ 3 --~ ~pt 5 - -  ~0'4) ] , 

S4/N 2= 
1 

{-&(QI + el + . . .  + e~') 

+ ½[ela2eaea cos (~'1 + V2 + V 3 -  V~) 
AI-~lQ2Q6Q7 COS (~t  I - -  ~fi¢2- ~ff6-~ ~t7) 

"+" ~1Q3~5~7 COS (~bt 1 - -  ID3 - -  ~¢5 21- {0'7) 

"+" t.Q2t.o3t.Qst.Q 6 COS (I//2 - -  ~ / 3 -  lff5 "+" 1if6) 

"Jl- ~01~04~05Q 6 COS (lffl -Jr" I/14 - -  I/-,/5 -- / i f6)  

"]-t.,o2t,,o4t.Qst.Q 7 c o s  (lff2-,]-- ~ ¢ 4 -  ]fi/5- ~/'7) 
"Jr-~3~4~6~7 COS (~//3 "91- ~/'¢4- ~) t6-  ~t7)]} " 

- i  1 
S's/NS/2 = 8]/2 " N]/N {eatQze5[c°s (gq + Vz-Vs)  

+cos  2V1 cos ( ~ q -  Vz+ Vs)] 

+ e~e3Q6[cos (~'1 + ~u3- ~u6) 
+ cos 2gq cos ( ~  - ~3 + v6)] 

+ e]e,e7[cos (~,2 + ~,3- ~,0 
+cos  2~2 cos ( ~ 2 -  V3+ V7)] 

"q- Q3~4Q7[COS ( ~ 1 -  ~b¢4 + {//'7) 

+cos  2~1 cos (VI+  V4-V7)] 
"q- ~32Q4~6 [COS(~¢2-- ~/4 "{- ~¢6) 

+cos  2V2 cos (V2+ V 4 -  V6)] 
+ eae4Qs[ cOs ( ~ 3 -  ~bt4 21- ~ffS) 

+ COS 2~3 COS (~3 + ~//4 - -  ~t5)] "~ cycl . . . .  

-2[e~2ese6e7 cos 2V1 cos (~5 + V 6 -  ~'7) 
dr" ~2Q5Q6Q7 c o s  2~b¢ 2 COS (~//5-- ~¢6 "gf" ~g7) 

q-Q3Q5Q6Q7 cos 2~3 cos (-- ~5 + ~t6+ ~//7) 

+ a2ese6e7 cos 2v4 cos (v5 + ~u6 + ~/7)]} • 

By repeated application of (3), (4), (5) the desired 
probability function, correct up to and including 
terms of order N 3/2, is finally 

P (R1, • • •, R7, (0i, • • . ,  (07) 

1 
= ~ -  R1R2.. .R7 exp ( - R ~ - R ~ - . . . - R 2 7 )  

× {1+ -~-NN[RIRzRscos((01+(02-(0s) 

+R1RzR 6 cos ((01 + (03- (06) + R2R3R7 cos ((02+ (0a - -  (07) 

+ R1R4R 7 cos ((01 - -  (04 At" (07) AI- R2R4R6 cos ((02- (04 + (06) 
+RaR4Rs cos ((0a- (04 + (05)] 

1 
N [(1-R~)  ( I - R ~ )  (1 -R~)  

2 2 2 - R1RzRscos (2(01 + 2(02- 2(05) 

+ ( 1 - R  2) ( 1 - g  2) (1-R2)-R~R~R~ cos (2(01 + 2(03- 2(06) 
+ ( I _ R 2 2 ) ( l _ R  2) 2 2 2 2 (1 - RT)- R2RaR7 cos (2(02+ 2(03-2(07) 
+(1-Ri )  (1-R~) (1--R~)-R~R~R~ cos (2(01-2(04+ 2(00 
+(1-R~) (1-R~) 0-Rb--R~R~R~ cos (2(0~--2(04+2(0~) 
+(1--g 2) (1-R~ (1-R~)-RmR4'R2 cos (2(0~-2(0,+2(0~)] 

2 
- -N R1R2R3R4[(1 - R]) + (1 - R~) + (1 - R~] 

X COS ((01 2i- (02 "91- (03 - -  (04) 

R1R2R6R7[(1-R~)+(1-R])] cos ((01-(02--(06+(07) 
2 
N 
2 

N 
- - -  R1R3RsR7[(1-R2)+(1-R])] cos ((01-(03-(05+(07) 

_ 2 R1R4RsR6[(I_R2)+(I_Ra2)] cos ((01+(04-(05-(06) 
N 

i - , , -  

1 [ R 4 + R ~ + . . .  +R4_4(R2+R22+. . .  +R72)+14 ] 
4N 

2 [R1R2RaR4 cos ((01 + (02 + (03- (04) + ~  

+R1R2R6R7 cos ((01 - (02 - (06 27 (07) 

+R1R3RsR7 cos ((01 - (03 - (05 + (07) 
+ R2RaRsR6 cos ((02- (03 - (05 + (06) 
+R1R4RsR6 cos ((01 + (04- (05- (06) 
+R2R4RsR7 cos ((02 + (04- (0s --  (07) 
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+R3RaR6R7 cos ({03 ÷ {04 - -  {06 - -  {0/77)] 

1 
4NVN [R~R2R5 cos (3{01 - {02 ÷ {05) 

+ 3R1(2-- R~)R2R5 cos ({0~ + {02-{05) 
+R~R3R6 cos (3{01 - {0z ÷ {06) 
+ 3R~(2- R~)R3R6 cos ({0~ + {03-{06) 
+R~R3R7 cos (3~02- {03 ÷ {07) 
+3R2(2-R~)R3R7 cos ({02 +{03-{07) 
at" • • • 

-2RZ~RsR6R7 cos 2{0~ cos ({05 ÷ ~P6- {07) 
-2R~RsR6R7 cos 2{0z cos ({0s- {06 + ~07) 
-2R]RsR6R7 cos 2{03 cos ( -  {05 + {06 + {07) 
-2R~RsR6R7 cos 2{0+ cos ({05 ÷ {06 ÷ ~07)] + . . .  }. (S) 

Some terms not essential to our aim are omitted in (8). 
If we define 

4 = {01 -at- {02 "at" {03 --"{04 , 

we may derive from (8) 

P(R1, R2, . . . , RT, 4, {05, {06, {07) 

x P (R1,. •.,  R7, {01, {02, {03, {01 + {02 + (o3 - 4, {05, {06, {07) 

8 
= --~ R~R2. . .R7  exp ( - R ~ - . . . - R ~ )  

x { 1 -  ]-..q "at" ~ q  2 RtRzRaR+[R 2 ÷ R26 ÷ R} - 2] cos 4} 

(9) 
where 

q=[ (1-R~)  (1-R~) (1 -R~) +(1 -R~) (1-R~) (l-R62) 
+ ( 1 - R ~ )  (1-R~) ( 1 - R ~ ) + ( 1 - R ~ )  ( l - R ] )  (1-R~) 
÷ ( 1 - R ~ )  (1 - R ] )  (1 -R62) ÷ ( l - R ] )  (l-R42) (1 -R~)] 
+¼[R~+R4+. . .  + R4-4(R~ ÷ R~ + . . . ,a÷ R27)+ 14]. 

Terms containing {05, {06, ~07 are not present in (9): the 
marginal probability density P(R1,R2, . . . ,R7,4)  is 
finally given by 

P (R1 ,  R2 ,  • • . ,  RT, 4 )  

_ 64 RIR2.. "R7 exp ( -  R 2 - . . .  - R 2) 
7~ 

x { 1 -  -~  + ~ q  2 R1R~R3R4[R ] + R2 + R2_ 2] cos 4} 

(10) 

1.4 The conditional expected value of  
COS ({oh -At- {ok "at" {01 - -  {oh + k + 3 given 
IEhl, levi,  lEd, IEh + k +,l, IE~ + ~l, IE~ + ~, I IE~ + d 

An expected value of considerable importance is the 
expected value of the cosine invariant cos 4 given 
R1, R2, . . . ,  R7. The circumstance is the one commonly 
met in practice in which the magnitudes of the struc- 

ture factors are known but the phases are not. In order 
to determine this expected value we derive 

P(41R1,R2, . . .,R7) 

- -  2 2 2 1 R1R2R3R4 JR5 ÷ R6 ÷ RT- 2] cos 4 .  (11) 
27z + zcN(1-q/N) 

When R 2 + R62 + R 2 = 2,  

1 
P(4[RI , . . . ,R7)  = 27~ (12) 

the probability density of 4 is uniform in (0, 27~). 
From (11) we may derive 

R1R2R3R+ [R~ ÷ R~ ÷ R ~ -  2], 
((COS 4 1 R I , . . . , R 7 )  ) -  N ( 1 - q / N )  

(13) 

V= (cos 2 4[R1, . . .  ,RT)-COS(4[R1,. . . ,RT) 2 
2 2 2 2 2 R1RzRzR4[Rs÷R~+RZ-2]2 (14) 

= ½ --  7 ~ 2 ( N _  q)2 

Under the conditions in which (12) holds, (14) tells 
us that the variance joined with cos {0 is ½. When N is 
large enough, cos 4 is probably positive when E 2 + E 2 
+ E ~ -  2 > 0, probably negative when E ] + E6 z + E7 z < 2. 
The character of positivity or negativity is strength- 
ened by large values of IE1E2E3E41. When N is not too 
large, the mathematical procedure for deriving (13) 
and (14)presents some inconveniences: 

(a) for large values of the R's the value of q may 
equal or approximate N. (13) then has discontinuities 
or assumes values, very large in modulus, which are 
positive or negative according to whether N is larger 
or smaller than q. 

(b) when q is not very different from N, (14) may be 
strongly negative. 

This aberrant behaviour at small values of N has no 
physical meaning, and is due to the fact that we have 
represented the probability distribution as an asymp- 
totic series: the actual values of the expected cosine 
and variance we obtain are then correct to the degree 
of approximation we choose• We should expect, 
therefore, that the inclusion in (8) of terms of higher 
order than 1IN 3/2 will have the effect of correcting 
these anomalies. This observation is in accordance 
with the fact that no aberrant behaviour occurs when 
N is large. 

If we content ourselves with including in the 
probability density expression the contributions of the 
terms of order 1IN 2, we must estimate in (7) 

S'6 $42 S~S's S;2S'4 S; 4 (15) 
N 3 + ~ + ~ + ~-/VK-- + 24N 6 • 

The calculation of the new probability function 
requires a lengthy application of (1)-(5). Formally, a 
large number of supplementary terms appear in the 
expression of the expected value of the cosine invariant. 
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If we just calculate the contribution of S'42/2N 4 w e  
obtain 

(cos CIR,, RT)= R~R2R3R4 [R~+R26+R27_2+G] 
"" "' N O - Q / N )  

(16) 
where 

1 
G = -  4 ~  [(6-  6R~ + R4) + . . .  + ( 6 -  6R~ + R 4) 

+ (2-4R] + RD + (2 -  4R~ + RD + (2 -  4R~ + R0], 

1 1 1  8 6 9 4  2 _3.. Q = q -  -N {2(r-~R~- R~ +~RI-6R~ + 5 ) + . . .  

+ ½@aR~- R67 + ° -~R 74- 6RTZ+ 3 ) 

+ & ( 2 -  4R~ + R4)[(2- 4Rl + R 4) + (2 -  4el + R~) 
+ . . .  + (2-4R~+ R4)] 
+ ~A-a(2- 4Rz 2 + R4)[(2- 4R] + R~) + . . .  
+ ( 2 -  4R~ + R4)] + . . .  
+ a-re(2- 4R~ + R 4) (2-4R.~ + R.~) 
+(1-RI)  (1-RJ) (1-R]) ( l - R 9  
+ (1 -R~ z) (1 -Rz  2) ( l - R 6  2) (1 - R.~) 
+(1-R~)  ( l - R ] )  ( 1 - R ~  (1-R~) 
+ ( 1 - R z  2) ( l - R ] )  (1-R~) (1-R~) 
+(1-R~)  ( 1 - R 9  (1-R~) (1-R~) 
+(1-R~)  ( l - R 9  ( l - R 5  z) (1-R~) 
+(1-R~)  (1 -R,]) (1-R~) (1 -R.~)}. 

As may be noted, G < 0 and Q < q for large values 
of the R's. The estimate of S'42/2N 4, therefore, modifies 
the expected values of cos • and the variance ex- 
pression in such a way as to reduce the aberrations in 
small structures. 

We shall not give here the complete expression of 
the contribution of the terms (15). In fact, if terms of 
order 1/N 2 were included in (16), this formula would 
become rather difficult to deal with, and would dis- 
courage the use of quartets in crystal structure solution. 
A different approach, therefore, will be tried. 

1.5 Expected values of cos (CPh+CPk+CPl+CPn+k+l...) 
when the exponential form for the probability 
density is used 

The possibility of increased accuracy may be elusive 
when the higher-order terms in the series expansion 
are discussed, especially if the largest normalized 
structure factor magnitudes are involved (Karle, 
1972). An improvement in the accuracy and inter- 
pretation, nevertheless, may be achieved by trans- 
forming the series expansion of the joint probability 
distribution to an exponential form, as from the ap- 
plication of the central-limit theorem (Bertaut, 
1960a, b). In particular the general positivity both of 
the probability density and of the variance values is 
assured. Under these assumptions (10) may be re- 
written 

?(R1,R2,...,RT, ~) 
64 

- R I R 2 . . . R 7 e x p ( - R ~ - . . . - R Z T )  

1 
x exp -~ {q + 2R~R2R3R4(R~ + R~ + R~-  2) cos 4} .  

(17) 

From (17)we obtain finally 

1 
P(~IR~,Rz , . . . ,RT)-  2M0(63 exp (G cos ~ ) ,  (18) 

where 

G= -~2 R1R2R3R4(R~ + R~ + R~-  2) 

We note that (18) has the same algebraic form as the 
conditional distribution of • = ~h + ~0k-- ~n+k given 
G=2RuRkRh+k/1/N (Hauptman, 1972) and of the 
phase • = 2 t P h  --  ~h+k - -  ~h-k given 
G= 1/N(2RZk- 1)RZhRh+kRh_k (Giacovazzo, 1974a). 

There is no problem in calculating from (18) the 
following functions (Hauptman, 1972): 

1 
P(cos 4163-  M0(G) exp (G cos ~)/sin 4 ,  

<cos ¢ I G ) -  11(63 
Io(63 ' 

11(63 x~(63 
var [cos JIG]-- 1 Gio(63 I2o(G) ' 

t 

(19) 

(20) 

(21) 

cos (t4~163- 1,(63 (22) 
Io(63 " 

This approach, nevertheless, involves an inconve- 
nience: the quantity q, which may strongly affect in 
(13) the expected values of the cosine, disappears 
during the mathematical manipulation which leads 
from (17) to (18). The effect is small for the cosines 
strongly defined negative by (13), but may lead to 
large overestimates for cosines strongly defined 
positive. A more suitable approach seems to be one 
which makes use of a suitable empirical function for 
rescaling the probability levels provided by the 
theoretical formulae. This procedure has already 
been successfully used for quartets in PT. Giacovazzo 
(1975b) showed that the reliability of the relation 

S(EhEkEiEh+k +l)= + 1 

depends on 

N-1lEhEkEiEn+k+,](gZh z +k+Eh+l+EZu+l--2) 
1 + 3 tanh [(E2h+k + E~+, + E~+l)/3] 

(23) 

in the same way as that of the ~2 relationship depends 
o n  

]EhEkEh + kI/ VN . 
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In (23) only the factor 3 t anh[ (E  2 +k-l- Eh+I- t -  
E2k+~)/3] was empirically determined. 

In accordance with the experimental tests (Giaco- 
vazzo, 1976b) a G factor suitable for obtaining in P1 
reliability levels for quartets comparable with that of 
triplets may be 

--1 2 2 2 
G= 2 N  RhRuRIRh+k+,(Rh+k+Rh+~+Rk+l- -2) .  (24) 

l+tanh[(RZh+k+R~+l+R~+l) /3]  ' 

the factor l+tanh[RZ~+k+R~+~+R2u+~)/3] has been 
empirically determined. 

1.6 Marginal distribution functions 

All three cross vectors h + k ,h+  l,k + 1 are not 
always in the set of measured reflexions. In order to 
derive useful information even in these less favourable 
cases, some marginal joint distributions must be 
considered. 

Let us suppose that the reflexion k + i  is not present. 
From the marginal distribution P(Rh, Rk, • • . ,  Rn+~, 
q~u,~0k,...,~0u+~) we derive again the relationships 
(18)-(22), but in this case 

G01, k, 1) = 2 N -  1RhRuR~R a + k 2 _ . +,(Rh+,,+R~+I 1) 

In these conditions COS(~0h-~-~0k-~-~01--~0h+k+l) is 
probably positive if R 2 2 +u+Rh+~-- 1 >0. The number 
of quartets for which two cross vectors alone are in 
the set of measurement may be a significant percentage 
of the total number of available quartets. In accor- 
dance with Giacovazzo (1976b), reliability levels for 
this kind of quartet comparable with that of the 
triplets may be achieved assuming 

6 ( h , k , l )  = 
- 1  2 2 2 N  RhRkR~Rh+k+l(Rh+k+Rh+~-- 1) 

1 + tanh  [(R~+k + R~+~)/2]. 
(25) 

If the h + l  and k + l  reflexions are not in the set of 
measured reflexions, inspection of the distribution 
P ( R u , . . . , R u + u , ~ O u , . . . ,  ~0h+U) leads us to derive again 
(18)-(22); in this case G(h,k,l) equals 

G"(h, k, 1) = 2N - 1RuRuRIR u + k + 1. R2 + u . 

In accordance with results obtained (Giacovazzo, 
1975a) in P~, if two o f h + k , h + l , k + l  are not in the set 
of measurements, we cannot define negative cosines. 

II. Practical application of the quartets in 
structure determination 

The recent progress in the theory of quartets justifies 
their greater use in procedures for crystal structure 
solution. We now give some applications. 

II. 1 A tangent formula for  quartets 

Let us derive from (8) the marginal probability 
density 

8 
P (~01, ~02, ~03, ~04, R1, R2, .  • . ,  R7) = - ~  R i .  • • R7 

{ q x e x p ( - R ~ - . . . R ~ )  1 - -  N +  NR1R2R3R4 

×(R~+ R~+ R~-2) cos (~o~ + ~o~ + ~o~- ~o4)}. 

It is easy to show that the probability 
P(~011~02, ~03,~04,R,...,R7) has the same form as 
P ( ¢ I R 1 , . . . , R T ) :  in view of the previous arguments 
we may write 

1 
P(~ohl...)-- 2nlo(G ) exp [G cos (~0h'Jl-~0k'31-~01--~0h+k+l)], 

(26) 

where G is defined by (24) [or by (25) if only two 
cross vectors are present in the set of measurements]. 

From (26) we obtain 

/1(6) 
(cos ~0n)- I 0 ( ~  cos (~0h+~,+,--fpk--~0,), 

/1(6) 
(sin ~0h)-- Io(G) sin (~0h+k+,--~0k--~0,) • 

Given several fixed 'addition triplets' ~0k + ~0~ + 
~0-h-k-~, we multiply the individual probability 
distributions (26) to obtain the form 

e(~o,I...) --- n Pk, ,(~o.I...) 
k, l  

~A exp [ ~ a(h,k,l)  cos (~o h +~o k + fo,- ~0h+k+l)] 
k , l  

= [2nI0(~)] -1 exp [~ COS~(~0h--fl)], (27) 

where 

~= {[ ~ G(h,k,l) cos (~0h+k+l-- ~0k-- ~0,112 
k , l  

+[ ~ G(h,k,l) sin (~0h+k+l--~0k--~0,)]Z} 1/2, (28) 
k, l  

cos t =  ~ 60a, k,l) cos (~Pn+u+l--~0k--~0t), (29"1/ 
k, l  

c~ sin t =  ~ G0a, k,l) sin (~0h+k+l--~0k--~Pt) • (29"2) 
k, l  

estimates the strength of the phase indication. 
The variance ((~0u-(~0h)) 2) is given by 

nZ o~ i2,(c0 
Var=  ~ -  +[10(60] -1 ~ n2 

n = l  

oo /2 .+1(~)  (3o)  
-4[I°(~)]-X,=o ~ (2n+l)  z" 

A formal treatment of (29) leads to the tangent ex- 
pression [see Schenk (1973a) for a related formula] 

tan fl___ ~k'lG01'k'l) sin (~h+k+l--~0k--~l) (30) 
~k,,G(h,k, 1) cos (~0h+k+,-- ~Ok-- ~0t) ' 
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whose nature deserves to be discussed. The usual 
tangent formula for triplets assigns a value to (on, 
given an addition pair (ok+(oh--k, in accordance with 
the rule (Karle & Karle, 1966) 

sin ((oh-- (ok -- (oh_k) : 0 . (31) 

Owing to the probability laws, the accepted solution to 
(31) is 

( o h  - -  ( i lk  - -  ( o h  -- k = 0 . 

Given an 'addition triplet' (ok-{-(ol-l-(o_h_k_l, we 
would expect that the tangent formula for quartets 
assigns to (oh a value in accordance with 

sin ((oh'Jf '(ok-]-(ol--(oh+k+,):O ; 

this time, according to the sign of G(h,k,l), the 
solutions 

( o h  21- ( o k  -]- (O' - -  ( o h + k + '  : 0,717 

are both possible. In this respect, a more explicit form 
of (30) is 

tan ( o h  ' ~  

~k,  1]G(h,k,l)l  sin {(oh+k+,- - (ok-- (o l+[ l - -S(h ,k , l ) ]7~/2}  
.................................... , 

~k.da(h,k,l)l  cos {(oh+k+,-- (ok-(o,+[1-S(h,k,i)]rc/2} 

(32) 

where S(h, k, 1) is the sign of G(h, k, 1). 
(30) or (32) may be conveniently compared with 

Simerska's (1956) tangent formula 

~.k, ,IEhEkE, Eh+k+,[ sin ( ( o h + k + l -  ( o k  - -  (Ol)  

tan (oh---- ~,k,,lEhEkE, Eh+k+ll cos ((Oh+R+,--(Ok--(Ol) " 

(33) 

(33) may be considered an asymptotic form of (30), 
( R h + k + R h + l +  since it replaces the actual values of 2 2 

RZk+,--2) with the positive normalized value (R2+k+ 
R2+ 2 -2 )k ,  l + R k + l  ,. 

II.2 Generalized tangent and Sayre formulae 
Several formulae which involve at the same time 

triplet and quartet relationships are known. A few 
have been given for structures which contain two types 
of atoms. We recall: 

(a) Fn=A . -~ ~, FhFn+k--B ~ FkF, Fh+k+, , 
k k,I 

(34) 
derived by Woolfson (1958) for centrosymmetric 
space groups; 

(1+1) ± 
nl n2 nln2 

(35) 
obtained by von Eller (1973) by the polynomial 
method. A,B, nl, n2 are positive values here not 
defined; 

(e) tan  (oh={~k IEkEh+kl sin ((oh + k -- (ok) 

--A ~, IEkE, Eh+k+,l sin ((oh+k+,--(ok-- (O,)} 
k,l 

+ {~.k lEkEh+k[ cos ((oh + k -- (ok) 

-A ~, IEkE, Eh+k+,I cos ((oh+k+,--(ok--(o,)}, 
k, I 

(36) 

where A =Eo/2~k E2, given by AUegra & Colombo 
(1974) for general structures. (34), (35) and (36) recall 
a similar formula, given by Hoppe & Gassmann (1968) 
and used in the 'phase expansion' process (Gassmann 
& Zechmeister, 1972). 

We will show: 
(a) (34), (35) and (36) are asymptotic relations, which 

are valid when a large number of triplets and quartets 
are considered. 

(b) their meaning is considerably different from the 
probabilistic Sayre and tangent formulae here stated. 

From the conditional probability P((OalR1,...) we 
obtain 

sin fl 
tan (oh-- COS fl ' 

where 

sin f l = Q .  {A(h,k) sin ((on+k-- (ok) 
+ A(h,l) sin ((oh+,-- (O,) 
+ A(h,h + k  +1) sin ((oh+k+,-- (ok+,) 
+ G(h,k,i) sin ((oh+k+,--(ok-- (O,) 
+ G'(h, - k , k  + 1) sin ((ok + (On+l-- (ok +,) 
+ G'(h, - l , k  + 1) sin ((O, + (on+k-- (ok +,) 
+ G ' (h ,h+k+ l ,  - h - k )  
× sin ((oh+k 21- (oh+l-- (oh+k+l)), 

cos fl ~ Q.  {A (h, k) cos ((oh + k -- (ok) + ' ' '  }.  

G and G' are defined by (24) and (25) respectively, and 

A (h, k) = 2RhRk  Rh + k/ V N . 

It is not important in this context to define Q. A 
further generalization leads to 

tan (oh = {~k A(h,k) sin ((oh+k-- (ok) 

+ ~ G(h,k,l) sin ((oh+k+l-- (Ok--(Ol)) 
k,l 

--{~k A(h,k) cos ((oh+k-- (ok) 

+ ~ G(h,k,l) cos ((oh+k+,-- (ok-- (O,)}, (37) 
k,l 

which is the required tangent expression. 
The reliability of (0h may be estimated by 

0Oh---- {[~ A(h,k) cos ((oh + k -- (ok) 
k,l 

+ G(h,k,l) cos ((oh+k+l-- (ok-- (Ol)] 2 

+ [ ~  A(h,k) sin ((oh+k-- (ok) 
k,I 

+ G(h,k,l) sin ( ( o h + k + l - - ( o k - - ( o l ) ] 2 }  1/2 . (38) 

A C 32A - 7 
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Similar considerations are valid in P]', 
(Giacovazzo, 1975b) 

P+(EO'--}+½ tanh lEvi 

x ~.k EkEh+k 

is 

where 

1 } 
+ ~ M ( h , k , l )  ; (39) 

EkEIEh+k÷l(Ei+k + E~+I + E~+I-- 2) 
M(h,k,l)= 1 -t-3tanh[(E2h+kq-E2k+l-FE~+l)/3] 

if all three cross vectors are in the set of measure- 
ments, and 

EkEiEh+ k + l(Eh + k + Eh + 1 - - 2  2 1) 
M(h,k,l) = 

1 + 3 tanh [(E2h+k + E~+l)/2] 

if the intensities of only two cross-vectors have been 
measured. 

Equations (34), (35) and (36) are derived from the 
properties of the electron density and of its powers. In 
fact, when a relationship is given which involv6s real 
functions [i.e. Patterson and (or) electron density], 
its Fourier transform gives a property which is valid 
in reciprocal space. The nature of this last property is 
asymptotic, inasmuch as summations are required 
for an infinite number of reflexions. Consequently, if 
its use involves a limited number of reflexions, the 
results may be misleading in the same way as 

1 
~(r) = ~ / ~ a  En exp ( -  2zci H. r) 

may fail when the summation involves very few re- 
flexions. The probabilistic approach used here, there- 
fore, is a more powerful device for phase determination. 

(37) and (39) are not directly comparable with (34), 
(35) and (36). Some similarity will be evident if we 
suppose that: 

(a) Ek, E l , . . . ,  Ek÷l are independent variables. 
(b) the number of triplets and quartets considered is 

very large. Under these conditions, in fact, we may 
replace in (37) and (39) (IEh+kl z +lEh+,l z +lEk +,12- 
2),(IEh+klZ+lEh+llZ--1),..., by their mean values 
(~1).  

The asymptotic expressions of (37) and (39) never- 
theless, unlike (34), (35) and (36), add the quartet to 
the triplet contribution. The difference is due to the 
fact that (34), (35) and (35) correct in the Sayre 
equation only the 'squaring effect'. For instance, Alle- 
gra & Colombo derived (36) from the condition that 
the difference between the real and the squared struc- 
ture must approach zero for the correct phase set as 
obtained in a multisolution procedure, so that the 
integral 

lo [:(') -  (0_1 ear (40) , 

where 
0 

In = Iv Q'(r)dv 

must be as small as possible. 

In spite of their asymptotic nature, (34), (35) and 
(36) are of some utility in the procedures for phase 
determination as they may lead to criteria suitable for 
finding the correct set of phases in a multisolution 
procedure (Wool(son, 1961 ; Allegra & Colombo, 1974). 

II.3 Figures of merit 
The formal similarity between the probabilistic 

relationships for triplets and quartets allows the use 
of similar figures of merit for resolving the ambiguities 
of direct solutions. So, when triplets and quartets are 
used at the same time for crystal structure solution 
the correct set of phases should be characterized by 
the highest values of 

h 

c c =  A(h,k) cos (eh + e +0 
h,k 

+ aC ,k,l) cos 
h, k, ! 

eh is defined by (38). See Schenk (1973a) for related 
criteria. 

For testing the effectiveness of using a particular 
set of origin- and enantiomorph-fixing reflexions, 
Germain, Main & Wool(son (1970) proposed in their 
'convergence method' the use of the quantity <a2> '/2 
for each reflexion, calculated in the absence of phase 
information. 

When triplets and quartets are used at the same time 

@~>= ~ A2(h,k) + Y G2(h,k, 1) 
k k,l 

Ii[A(h, k')] I,[G(h,k", i)] 
"4-2k,,k~,l~ A(h,k')G(h,k",l)Io[A(h,k')]  I0[G(h, k", l)] 

+2  ~ A(h,k')A(h,k")I,[A(h,k')]  Ix[A(h,k")] 
k' ~k" I0[A(h,k')] 10[A(h,k")] 

+2  V G(h,k',l ') G(h,k",l") ll[G(h,k',l')] 
k ' ¢ k  ~ Io[GCll, k ' ,  1')] 
1'31 # 

l~[G(h, k", I")] 
x Io[G(h, k", 1")1 " (41) 

Since the value of @2h> given by (41) is in general 
larger than that resulting when triplet relationships 
alone are used, we would expect that the simultaneous 
use of quartets and triplets may markedly improve 
the choice of the origin- and enantiomorph-fixing 
reflexions as well as the reliability of the new phase 
indications. 

If no self-consistency in the contributors to ~h in 
(41) can be found, the random expectation values is 

@2h>,ana = ~ A2(h, k) + ~ GzCn, k,l) • 
k k,l 

If 
Zexp : ~ / ~ 2  \ 1 / 2 .  Zran d = ~ / , v 2  \1/2 \ ~ h / e x p  , Xt~h/rand , 

h h 
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an absolute figure of merit Mabs may be defined by 

Z - -  Zrand 
Mabs = Zexp_ Zran d , 

which should have properties similar to that defined 
by Germain, Main & Woolfson (1974) when triplet 
relationships alone are used. 

A specific use of the negative cosine invariants 
COS ((/gh'31-(/)k"}-~Ol--q)h+k+l) may be made in order to 
identify the correct solution in centro- and non- 
centrosymmetric symmorphic space groups. 

Semi-empirical figures of merit based on negative 
general quartets have already been proposed (Schenk, 
1974). As they are based on probabilistic relationships, 
the criteria 

N Q C I =  ~ M(h,k,l)S(EhEkEiEh+k+l),  
h, k, 1 

NQ1 = ~ G(h,k,l) cos ((Ph+~k+fPl--~h+k+l), 
h, k, 1 

could be more useful for P1 and P1 respectively. 
NQC1 and NQ1 should be a maximum for the correct 
structure. 

As the available number of general negative quartets 
may be small, special negative quartets may also be 
usefully tested. Schenk & de Jong (1973) and Schenk 
(1973)b suggested two criteria, respectively in PT and 
P1, based on special quartet (h=k)  relationships 

H K C = ~  - - ( I U h l - l f k l ) 2 a ( h + k ) S ( h - k )  (41) 
b,k (1--1Uh+kl) (1--1Uh-kl) 

(I Uhl-- I U~I)' 
PlC--~ (1 IU~+~I)(1 IU~-kl) h,k -- 

x 17~- (~0h+k + feb_k-- 29h)1 (42) 

in which 0 < ~0h+k + ~Ph-k-- 2~Ph < 2Zr. 
The form of (41) and (42) was deduced in confor- 

mity with the Harker-Kasper inequalities. Owing to 
the boundary nature of the inequalities, more useful 
criteria may be specified in the field of the commonly 
observed normalized structure factors from probabi- 
listic theories. 

In accordance with the probabilistic approach 
followed by Giacovazzo (1974a, b) we suggest for this 
kind of special quartet the criteria, in P1 and P1 
respectively: 

NSQC1 = ~ L ( h , k ) S ( h + k ) S ( h - k ) ,  (43) 
h,k 

NSQ1 = ~ T(h,k) cos (~Ph+k +~h-k - -2~h) ,  (44) 
h, k 

where 
L(h,k) = 2 z z IE,, + kEh_kl(2EhE,,-- E , , -  E~),  
T(h,k) = (2R 2 -  1)RhRh+kRh_ k . 

HI. Conclusions 

A probabilistic theory is described which leads to 
estimates for cos (~h + ~k + ~l-- ~h+ k+l). The cal- 
culations are performed up to 1/NVN order terms. It 
is recognized that the reliability levels of the phase 
indications are not on the same scale as that of the 
triplet cosines. To avoid complications arising from the 
use of 1IN 2 order terms, an empirical scaling factor, 
as suggested by some experimental tests, has been 
introduced. The proposed formulae are not expensive 
in computing time and seem to improve the results. 

An advantage of the theory is the similarity of the 
relationships to those valid for triplets. This allows the 
use of much of the mathematics already used for 
triplets in procedures for phase determination. 
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